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Introduction

The internet is “a network of networks”. It’s made up of tens of thou-
sands of largely independent networks, but somehow the users of one 
network can communicate with the users of any of the other networks. 
The Border Gateway Protocol (BGP) is the glue that binds these dis-
parate networks together.

BGP is a routing protocol: its main job is to allow each network to learn 
which ranges of IP addresses are used where, so packets can flow 
along the correct route.

However, BGP has a more difficult job to do than other routing proto-
cols. Yes, it has to make the packets reach their destination, but BGP 
also has to pay attention to the business side: those packets only get to 
flow over a network link if either the sender or the receiver pays for 
the privilege.

This book covers the fundamentals of the technical side of BGP, and 
also looks at the intersection between the technical and business as-
pects of internet routing.

The book contains 40 configuration examples that readers can try out 
on their own computer in a “BGP minilab”. 
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About this book

I already wrote a book about BGP back in 2002. So why another one?

What I’ve learned over the years is that at its core, BGP is quite simple. 
However, there are many hidden nuances and caveats that people 
usually only begin to understand when they run into them in practice. 
But learning those things the hard way on a live network is less than 
ideal.

So what I want to do here is provide examples that are as close to real-
world BGP internet routing as possible, allowing you, the reader, to 
start understanding the forest better by looking at some individual 
trees. All of this is based on running BGP training courses for almost 
two decades.

To keep both the writing (for me) and reading (for you) of this book 
manageable, the book only covers the BGP protocol and BGP configu-
ration for connecting a network to the internet. There is a lot more to 
running a network, please find that information in other books and 
online resources. BGP is also extensively used in data centers and en-
terprise networks. This also not covered in this book.

You’ll get the most out of this book by running the virtual example 
network yourself and try out the examples. With today’s technology, 
it's possible to use Docker to run a bunch of virtual routers on a regu-
lar Windows, MacOS or Linux system. The examples are based on Free 
Range Routing, open source routing software that is configured very 
similar to “classic IOS” Cisco routers. However, the exact configuration 
language isn’t the point; once you understand the concepts, looking up 
the right keywords in the vendor documentation is the easy part.

That said, if you’d like to see configuration examples for other types of 
routers, please let me know and I may be able to add those to a future 
version of this book.
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Intended audience

This book is intended to be useful for anyone who wants or needs to 
know more about BGP, and how BGP is used for internet routing. A 
large part of the book discusses configuration examples, but even if 
you skip those, you should still get a good feel for the problems BGP 
solves. (And sometimes creates!)

The book is especially intended for network engineers who’ve just 
started using BGP to connect to the internet, and those who are con-
sidering doing that. Trying out the examples should give you a good 
feel for what that’s like, and enable you to decide whether that’s some-
thing you’ll feel comfortable doing yourself after some study, or it's 
better to hire someone else to guide you through the process and then 
take over yourself, or perhaps outsource configuring and maintaining 
your BGP setup.
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Internet routing

The internet consists of tens of thousands of networks that are owned 
and run by different companies/organizations. And yet, users of any 
of those networks can communicate with users of any of the other 
networks. It’s an amazing thing.

To make this possible, at some point each network is connected to one 
or more other networks, creating network paths between any two loca-
tions. When two networks connect directly, routing decisions are sim-
ple: just hand off the packets to the destination network over that di-
rect connection.

Things get more complicated when there’s one or more networks in 
the middle that connect the source and destination network. Typically, 
there will be several paths that go through different intermediate net-
works, making routing decisions somewhat more complex. But that’s 
nothing any routing protocol worth its salt can’t handle.

However, the real complication with internet routing is that the job is 
not simply finding the shortest path between any two locations, but 
also taking into consideration the business aspects of running a net-
work. What if networks A and B both connect to Microsoft? After all, 
users of both networks A and B want to be able to download their 
Windows updates and work on their Office365 documents with the 
highest possible performance.

So in theory, a user at network A can send packets to a user at network 
B through Microsoft. The physical connections are there, and left to 
their own devices, the routers will see those paths and use them if 
they’re shorter than alternative paths.

But Microsoft is not an Internet Service Provider (ISP)—they’re not in 
the business of providing connectivity between their users. So Mi-
crosoft will want to hide such paths in order to make sure that their 
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network isn’t used for traffic that falls outside the scope of the services 
they provide.

As a result, the Border Gateway Protocol (BGP), the routing protocol 
that’s used between the networks that collectively make up the inter-
net, must do everything that’s normally expected from a routing pro-
tocol, but in addition to that, apply policy restrictions to conform with 
business realities. We’ll see what this means a little later in the book in 
the chapter Transit and peering.

7



The BGP protocol

Most of this chapter provides background information about BGP that 
doesn't directly impact operation. If you want to skip this for now, 
please skip ahead to the last section in this chapter, BGP operation.

“BGP” stands for “border gateway protocol”. Back in 1989, when the 
first BGP specification was published, the word “gateway” was used 
for what we now call a router. So BGP really means “border router pro-
tocol”. A border router is, of course, the last router in your network, 
which connects to the first router in the next network. BGP is the pro-
tocol these two border routers in neighboring networks use to ex-
change routing information.

This makes BGP an “exterior gateway protocol” (EGP), not to be con-
fused with the exterior gateway protocol that’s actually called EGP 
[RFC 904], which has long been obsolete. All other routing protocols 
are “interior gateway protocols” (IGPs), meant for handling routing 
within a single network. Networks that run BGP almost always also 
run one of the IGPs to handle their internal routing.

The IETF

Internet protocols such as BGP are developed and maintained by the 
Internet Engineering Task Force (IETF). The IETF is an unusual stan-
dards organization, as it doesn’t have members: everyone can partici-
pate simply by joining the mailing lists for the different working 
groups. Three times a year, there are IETF meetings. The meeting fee 
(currently $875) is the main source of revenue for the IETF. As there is 
no formal participation, IETF decision making is done by “rough con-
sensus”. This means a decision must be supported by a large majority 
of those who express an opinion, but it doesn’t have to be completely 
unanimous.

IETF standards and other documents are published as a “request for 
comment” (RFC). Each RFC has a number. A new version of a docu-
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ment is published under a new RFC number. RFCs start their life as a 
working group “internet-draft”, which is iterated until the document is 
ready for publication as an RFC. Individuals may also write drafts, 
which may or may not be adopted by a working group and progress to 
an RFC.

Not every RFC is a standard. RFCs that specify a protocol that is in-
tended to become an official standard at some point  are published as 
“standards track”. Within standards track, a document used to start as 
a “draft standard”. That stage is now merged with “proposed stan-
dard”. After significant operational experience and refinement, a pro-
tocol specification may become an official internet standard.

BGP-4 [RFC 4271] is still a draft standard—moving protocols along 
through the standards track process isn’t always given the highest pri-
ority within the IETF.

Protocol specifications may also be published as “experimental”. Doc-
uments of various kinds are published as “informational” and opera-
tional guidance may become “best current practice” and receive a BCP 
number. When a document is no longer relevant it is given the status 
“historic”.

The best way to read RFCs online is as the HTML version at the RFC 
Editor website www.rfc-editor.org. Originally, RFCs were published in 
a very simple text-only format. The HTML versions add information 
about a document’s status at the top, as well as links to related RFCs.

Distance vector vs link state

And now it's time for some routing protocol theory. There are two 
ways to distribute routing information through a network: distance 
vector and link state. The idea behind distance vector is that a router 
collects routing information (paths towards each prefix) from its 
neighbors, then chooses the best path towards each prefix, and tells its 
neighbors that best path. Alternative paths that are not considered 
“best” at this time thus remain hidden from other routers. 
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With link state protocols, a router doesn’t tell its neighbors about the 
conclusions of its path calculations, but rather, the data it used to reach 
those conclusion. So each router independently calculates the best path 
to reach each destination.

Link state protocols have the advantage that they’re faster than dis-
tance vector protocols. With a link state protocol, whenever a router 
detects that it has lost the connection to a neighboring router, it will 
send out an update to its remaining neighbors, which is quickly 
“flooded” throughout the network. Then each router recalculates the 
best paths. With a distance vector protocol, a router first has to recom-
pute all paths, and only then it can inform its remaining neighbors of 
the change.

A limitation of link state protocols is that all routers must use the same 
algorithm and the same parameters to calculate paths. If they didn’t, 
routing loops would be possible.

The main example of a distance vector protocol is RIP [W]. RIP is a very 
simple protocol that uses a hop count as a way to determine which 
path is best. That can mean that one 1 Gbps hop is preferred over two 
10 Gbps hops, which is usually not what you’d want. A big downside 
of RIP is that it's very slow to react to lost connectivity due to the 
count-to-infinity problem [W]. The current IPv4 version of RIP is 
RIPv2, the IPv6 version is RIPng.

Cisco built its own more advanced distance vector routing protocols: 
IGRP and EIGRP [W].

OSPF is the most widely used example of a distance vector protocol. 
With OSPF, each link between two routers has a “cost” associated with 
it, and OSPF then uses the “Dijkstra” a.k.a. “shortest path first” (SPF) 
algorithm to calculate the best path between any two points in the 
network. The current version for IPv4 is OSPFv2 [RFC 2328] and for 
IPv6 OSPFv3 [RFC 5340].
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IS-IS [W] is a link state protocol created for the OSI CNLP protocol. It 
was later extended to also support routing IPv4 and IPv6. IS-IS is 
mainly used in very large IP networks.

Which brings us to BGP: is it a distance vector or a link state protocol?

As we’ll discuss in the chapter Transit and peering, internet routing 
requires using policies that limit the propagation of routing informa-
tion. This makes it impossible to use a link state routing protocol for 
inter-domain routing. So BGP is mostly a distance vector protocol, but 
unlike other distance vector protocols, BGP carries path information in 
its updates. This makes it possible to detect routing loops much faster, 
so BGP can reroute more quickly after a failure than a simple distance 
vector routing protocol such as RIP.

BGP versions

BGP version 1 was published in 1989 [RFC 1105]. Versions 2 
[RFC 1163] and 3 [RFC 1267] quickly followed over the next two 
years. With version 3, BGP looked a lot like the BGP we know today, 
except that it still only supported classful addressing. BGP-4 added 
support for classless inter-domain routing. BGP-4 was first published 
in 1994 [RFC 1654]. There have been two revisions of the specification 
(not of the protocol), with the most recent one published in 2006 
[RFC 4271].

Amazingly, we still use BGP version 4 today, 28 years after the protocol 
specification was first published. There are two reasons for this:

1. It's really hard to change the routing protocol that's used inter-
net-wide.

2. BGP-4 is designed to be extended in backward compatible ways, 
so new features could be added without having to create a new 
version of the protocol.
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Autonomous Systems

Networks that run BGP are called autonomous systems (ASes). The idea 
is that each AS presents a consistent view of itself to the outside world, 
and what happens inside an AS is irrelevant to other ASes, as far as 
BGP is concerned.

One definition of an AS as “all routers under common administrative 
control”. However, that definition doesn’t work for service provider 
networks, as the service provider only has administrative control over 
its own routers; many customers administer their own routers them-
selves. But if these customer routers don’t run BGP themselves, they’re 
still part of the service provider’s AS.

Each AS has an AS number. These used to be 16-bit numbers, but BGP 
was extended to support 32-bit (sometimes called “4-byte” or “4-
octet”) AS numbers. As of the middle of the 2010s, all BGP routers 
support 32-bit AS numbers. But if a router doesn’t understand 32-bit 
AS numbers, it will simply see AS number 23456 any time an AS num-
ber shows up that’s not 16-bit compatible.

BGP neighbor relationships

Like all routing protocols, BGP maintains relationships with neighbor-
ing routers. Unlike other routing protocols, BGP doesn’t discover 
neighboring routers automatically. Instead, BGP neighbor relationships 
must be explicitly set up on both sides through administrative configu-
ration. I.e., you’ll have to tell the router the IP addresses of its neigh-
bors along with the remote AS number and other information that’s 
relevant to that specific neighbor relationship. We’ll start doing that in 
the chapter BGP configuration 101.

BGP routers communicate with their neighbors over TCP port 179. 
Both neighbors try to connect to the other on port 179. This means that 
sometimes router A is the “client” and router B is the “server”, and 
sometimes the other way around. After the TCP session has been es-
tablished, the two routers start to exchange BGP messages. The TCP 
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session stays connected indefinitely. So it’s not unusual to see BGP 
TCP sessions that have been up for weeks or even months.

When the TCP session goes away, the BGP routers on both sides throw 
out all the routing information they’ve learned over that BGP session 
and then try to set up a new TCP session.

BGP messages

When a BGP TCP session connects, the two routers will start to ex-
change BGP messages. The following is a brief description of each 
message type; for detailed information see section 4 of RFC 4271.

All BGP messages start with a “marker” for compatibility with older 
BGP versions, with the rest of the message following the type-length-
value model [W]. There are five BGP messages:

1. Open

2. Update

3. Keepalive

4. Notification

5. Route-refresh

The Open message contains a version field, which was useful during 
the transition from BGP-3 to BGP-4. The router also puts its AS num-
ber, its router ID and its configured hold time in the Open message. 
The router ID is a 32-bit value that’s unique for a router (usually one of 
its IPv4 addresses) and the hold time is how long the router will wait 
before declaring the BGP session dead when it doesn’t see any incom-
ing BGP messages.

Last but not least, there’s room for optional parameters. These are typ-
ically used to negotiate the use of BGP extensions.

The Update message does most of BGP’s heavy lifting. An Update 
message can carry withdrawn routes, new routes or both. Any with-
drawn routes simply go in the “withdrawn routes” field. New routes, 

13

https://www.rfc-editor.org/rfc/rfc4271#section-4
https://en.wikipedia.org/wiki/Type-length-value
https://en.wikipedia.org/wiki/Type-length-value
https://en.wikipedia.org/wiki/Type-length-value


if they're included in the update, use two fields: path attributes and 
NLRI.

The withdrawn routes are routes (prefixes) that the neighbor had pre-
viously told us we could reach through them, but now this is no longer 
the case. So the local router removes those paths from its BGP table. 
See the section BGP operation later this chapter for how this works.

Path attributes are different kinds of information that BGP associates 
with each prefix. The two most important ones are the AS path, which 
shows all the ASes between the local router and the destination prefix, 
and the next hop address, which is the address we have to send pack-
ets to in order for those packets to reach the destination in question.

NLRI stands for network layer reachability information, which is just a 
fancy way of saying “one or more IP prefixes”. There’s only one set of 
path attributes, so if the NLRI field contains multiple prefixes, those all 
have the same path attributes. Prefixes with different path attributes 
are transmitted in separate Update messages.

The Keepalive message contains no information: it just has the fixed 
marker, the type is 3, indicating a Keepalive message, and the length is 
zero. Keepalive messages are sent periodically in order to make sure 
that the neighbor sees we're still alive and thus the session’s hold timer 
at the neighbor’s side doesn’t reach zero. See the Making BGP faster 
chapter for more information.

Routers send a Notification message when they need to tear down the 
BGP session. This is usually because an error has occurred, but also 
when the session needs to be terminated because of maintenance, or as 
part of capabilities negotiation. The Notification message has an error 
code and an error subcode as well as room for optional additional 
data.

The Route-refresh message is an addition to BGP [RFC 2918] to al-
low a router to ask a neighbor to send all BGP updates again. This way, 
new filters can be applied to those updates. See the chapter Filtering 
BGP for more information.
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Path attributes

There are four types of path attributes:

1. Well-known mandatory: all prefixes must carry this path at-
tribute.

2. Well-known discretionary: all BGP implementations must be 
able to process this path attribute, but prefixes may or may not 
carry this attribute.

3. Optional transitive: BGP implementations aren't required to 
process these. If a router encounters an optional transitive path 
attribute that it doesn't understand, it has to propagate the at-
tribute to its neighbors unchanged.

4. Optional non-transitive: BGP implementations aren't required to 
process these. If a router encounters an optional non-transitive 
path attribute that it doesn't understand, it removes the at-
tribute.

IANA is the organization that keeps track of internet-related protocol 
numbers. The IANA BGP attributes registry currently lists nearly 40 
path attributes. These are the ones defined in the BGP specification:

1. ORIGIN (well-known mandatory): indicates whether a path was 
learned from an IGP, from the EGP protocol or is “incomplete”, 
meaning it was learned through some other means. The ORIGIN 
attribute doesn't seem to perform any function.

2. AS_PATH (well-known mandatory): the list of ASes that have 
“seen” this path. Used for loop suppression and may also be 
used for filtering and policy.

3. NEXT_HOP (well-known mandatory): the address of the next hop 
router, which is normally the address of the BGP neighbor that 
sent the update.
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4. MULTI_EXIT_DISC (optional non-transitive): the multi exit dis-
criminator (MED) is also often called “metric”. Is used to choose 
between paths learned from the same neighboring AS.

5. LOCAL_PREF (well-known mandatory): the local preference car-
ries a path’s degree of preference. This attribute must be present 
on updates within an AS (iBGP), but not on updates that go to 
external ASes (eBGP).

6. ATOMIC_AGGREGATE (well-known discretionary): used when 
routers perform aggregation. This was relevant in the transition 
from BGP-3 to BGP-4, but is rarely used today.

7. AGGREGATOR (optional transitive): also used for aggregation.

The following are path attributes that were added later to BGP, and are 
thus optional.

• COMMUNITY (transitive, [RFC 1997]): carries one or more 32-bit 
labels that can be used for various purposes. See the Filtering BGP 
and Traffic engineering chapters for more information.

• ORIGINATOR_ID and CLUSTER_LIST (non-transitive, [RFC 4456]): 
used by BGP route reflectors, see the chapter iBGP.

• MP_REACH_NLRI and MP_UNREACH_NLRI (non-transitive, [RFC 
4760]): carry multiprotocol extensions, see the section Multipro-
tocol BGP later this chapter.

• EXTENDED COMMUNITIES (transitive, [RFC 4360]): supports larger 
communities of different types. Not very widely used (for inter-
net routing) because each of the different types of extended com-
munities needs to be supported explicitly by a BGP implementa-
tion.

• AS4_PATH (transitive, [RFC 6793]): carries the 32-bit version of 
the AS path. 32-bit capable routers update both the AS4_PATH as 
well as AS_PATH, inserting “23456” as a placeholder for 32-bit AS 
numbers. 16-bit capable routers of course only update the AS_-
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PATH, but the next 32-bit router will add any AS hops missing 
from the AS4_PATH using the AS_PATH.

• LARGE_COMMUNITY (transitive, [RFC 8092]): larger communities.

• BGPsec_Path (non-transitive, [RFC 8205]): path attribute that 
carries the protected AS path as per the BG Psec security mecha-
nism. See the section on BG Psec in the BGP security chapter.

Multiprotocol BGP

The routing protocols we still use today were all initially created in the 
1980s, long before IPv6 saw the light of day. Of course, once IPv6 ar-
rived, it also needed routing protocols. For RIP and OSPF, new ver-
sions of those protocols were built from the ground up. This is the 
“ships in the night” concept: RIPv2 and OSPFv2 handle IPv4 routing 
while RIPng and OSPFv3 handle IPv6 routing. Other than their basic 
design, the IPv4 and IPv6 versions of these routing protocols are com-
pletely separate and they don’t interact at all.

IS-IS uses the opposite approach: the one IS-IS protocol handles IPv4 
and/or IPv6 routing alongside the OSI CLNP for which it was created.

Like IS-IS and unlike RIP and OSPF, there’s just one BGP that handles 
both IPv4 and IPv6. This is made possible by the BGP multiprotocol 
extensions [RFC 4760].

Rather than just add support for IPv6, multiprotocol BGP adopts the 
“address family” concept, with IPv4 and IPv6 being different address 
families, along with other address families such as Ethernet VPN 
(EVPN).

A set of related protocols, such as TCP/IP is called a protocol stack or a 
protocol family. At some point, the idea was that a protocol family like 
TCP/IP would support multiple address families, but that never 
worked out, so in practice there is no difference between a protocol 
family and an address family. The term “address family” is the one 
used with multiprotocol BGP, although “protocol family” would prob-
ably be clearer.
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In BGP, address families are identified with the address family identifi-
er (AFI). There’s also a subsequent address family identifier (SAFI) 
that’s used to differentiate between (for instance) prefixes used for uni-
cast (one-to-one) and multicast (one-to-many) communication. IANA 
maintains AFI and SAFI registries.

Multiprotocol BGP is implemented through two new path attributes 
already mentioned earlier this chapter: MP_REACH_NLRI and MP_UN-
REACH_NLRI. The MP_UNREACH_NLRI replaces the “withdrawn routes” 
field in the BGP Update message, containing an AFI and SAFI and 
then NLRI formatted in the way specified for that AFI and SAFI. For 
instance, IPv4 NLRI is encoded as a one-byte length field that holds 
the prefix length and a variable length prefix field.

So for instance a /20 prefix would be three bytes in length that hold 
the 20-bit prefix padded to 24 bits to make the prefix value three bytes 
long. Interestingly, the RFC that describes the use of the multiprotocol 
extensions for IPv6 [RFC 2545] doesn’t even bother specifying the 
same for IPv6. Obviously the only difference is that the prefix length 
can now be up to 128 rather than 32.

The MP_REACH_NLRI attribute replaces the NLRI field in the Update 
message. Like MP_UNREACH_NLRI it holds an AFI, SAFI and NLRI, but 
in addition to those fields, also a next hop length field and a variable 
length next hop field.

All interfaces that have IPv6 enabled must have a link local address in 
addition to any regular global unicast addresses. Link local addresses 
are addresses that are only used locally on a subnet, and thus don’t 
have to be globally unique. They fall within the prefix fe80::/64. 
Routes in routing tables typically point to the link-local addresses of 
routers.

Because IPv6 requires routing protocols to carry link local addresses, 
when using the IPv6 AFI, multiprotocol BGP carries a link local next 
hop address as well as a global next hop address where appropriate. 
When only a global next hop address is present, the next hop length is 
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16 (128 bits), when there’s also a link-local next hop address, it’s 32 (2 × 
128 bits).

MP_REACH_NLRI and MP_UNREACH_NLRI replace the withdrawn routes 
and NLRI fields in the Update message, so these remain empty in mul-
tiprotocol BGP operation. Other path attributes are included as usual.

With multiprotocol BGP, it’s possible to run the BGP TCP session either 
over IPv4 or over IPv6, and the session can carry IPv4 and/or IPv6 
prefixes. Routers will announce the AFIs/SAFIs they want to enable on 
a new session in the Open message. To avoid problems with next hop 
address processing, it’s best to use an IPv4 BGP session to exchange 
IPv4 prefixes with neighboring ASes and an IPv6 BGP session for IPv6 
prefixes. For iBGP this is slightly different, as we’ll see in the iBGP 
chapter.

BGP states and finite-state machine

A BGP session can be in one of six states. The relationship between 
these states and the 28 events that can move the session from one state 
to another are modeled using a finite-state machine (FSM) [W]. The 
BGP RFC describes the FSM in detail; this is a simplified version:

19

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine


Figure 1. A simplified version of the BGP finite-state machine

BGP sessions start in the Idle state. In the Idle state, the router doesn’t 
try to connect to the neighbor in question, and incoming connection 
attempts are rejected. It is possible to move directly from the Idle to the 
Connect state, but usually, when the router is ready to start a BGP ses-
sion, the session first moves to Active.

In the Active state, there is no active connection yet, but the router ac-
tively tries to connect to its neighbor. From Active, the connection can 
move to Connect, OpenSent or OpenConfirm.

Usually, a BGP session progresses quickly through the Connect, 
OpenSent and OpenConfirm states, so in figure 1 above those states 
are collapsed into a single one. Upon various error conditions, a con-
nection may revert back to Idle or Active. But if everything goes ac-
cording to plan, the session moves into the Established state.

In the Established state, the two routers on opposite sides of the BGP 
session are ready to exchange routing information in the form of BGP 

Connect / OpenSent / OpenConfirm

Established

Active

Idle

20



Update messages. It may take some time for the initial set of updates 
to be exchanged after a session enters the Established state. If an error 
occurs the session returns to the Idle state.

BGP operation

In this section, we'll have a look at how BGP routers exchange prefixes. 
An important rule is that a router may only propagate (announce) to 
its neighbors paths that it actually uses itself. So if a router has a choice 
of multiple paths towards a given destination prefix, it must first select 
the best one out of these paths.

BGP best path selection is somewhat complex, and we’ll discuss it in 
more detail in the Traffic engineering chapter. For now, we’ll just look 
at the AS path length, and consider the path with the smallest number 
of AS hops in the AS path best.

We’ll look at the flow of BGP updates between two autonomous sys-
tems, AS 10 to the left and AS 40 to the right. At this point, AS 10 and 
AS 40 don’t have a BGP session established between them yet:

         AS 10                         AS 40
  Network       Path            Network       Path
> 192.0.2.0     20 30 82      > 192.0.2.0     82
> 198.51.100.0  4206          > 198.51.100.0  4206

Both ASes have two prefixes in their BGP table: the 192.0.2.0/24 and 
the 198.51.100.0/24 prefixes. (The /24 prefix length is implied for 
these class C networks.) AS 10 can reach the 192-prefix through two 
intermediate hops and is directly connected to AS 4206, the origin of 
the 198-prefix. For AS 40, both prefixes are reachable directly over one-
hop paths.

Assuming no filters, when the BGP session between AS 10 and AS 40 
establishes, they each send a copy of their full BGP table to their 
neighbor:
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         AS 10                         AS 40
  Network       Path            Network       Path
> 192.0.2.0     40 82    <=   > 192.0.2.0     82
                20 30 82  =>                  10 20 30 82
  198.51.100.0  40 4206  <=   > 198.51.100.0  4206
>               4206      =>                  10 4206

So at this point, both ASes now have two paths towards each prefix: 
the one they already had, and the new one from the other AS. By send-
ing each other copies of these prefixes, the routers in both ASes invite 
the other to send traffic to these destinations through them.

What we see, as indicated by the > character, is that the AS 10 router 
takes AS 40 up on its offer to send traffic to the 192-prefix through AS 
40, as that path is two hops (40 82) while the path AS 10 already had 
is three hops (20 30 82). (When a router propagates a path, it adds its 
own AS number to the left of the existing AS path.)

However… moments earlier the AS 10 router had invited AS 40 to 
send traffic to the 192-network through AS 10. Should AS 40 want take 
AS 10 up on that offer, we’d be in the situation where AS 10 tries to 
reach 192.0.2.0/24 through AS 40, while AS 40 tries to reach 
192.0.2.0/24 through AS 10. This means we have a routing loop on 
our hands and packets will pingpong between AS 10 and AS 40.

So in order to prevent this eventuality, the AS 10 router sends an Up-
date message to the AS 40 router withdrawing the 192-prefix. When AS 
40 has processed this update and removed from its BGP table the path 
towards the 192-prefix through AS 10, BGP has reached a stable state:

         AS 10                         AS 40
  Network       Path            Network       Path
> 192.0.2.0     40 82         > 192.0.2.0     82
                20 30 82 => x
  198.51.100.0  40 4206       > 198.51.100.0  4206
>               4206                          10 4206

Note that for the 198-network, each router keeps the new path in its 
BGP table. For both, their original path is shorter and therefore pre-
ferred over the new path learned from the other AS. So in this case, 
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there is no conflict. Should one of the routers decide to start using the 
path through the other, it will send a withdraw at that point.

In this stable state, no further updates are sent, just periodic Keepalive 
messages to make sure the BGP session is still operational. When a 
router stops receiving Keepalive messages or loses the BGP TCP ses-
sion, it removes all paths learned from the neighbor from its BGP table, 
selecting new best paths as necessary, and starts trying to re-establish 
the BGP session. When it does, prefixes are exchanged again as de-
scribed above.

23



BGP configuration 101

With all the preparations out of the way, we’re now ready to start con-
figuring a router to speak BGP!

The assumption is that the router is already set up, has connectivity to 
two ISPs, and that the router interfaces towards those ISPs are config-
ured with the right IP addresses. Example 1 shows the simplest possi-
ble BGP configuration with two ISPs.

Example 1: A very simple BGP configuration
!
router bgp 65082
 network 192.0.2.0/24
 neighbor 192.0.2.21 remote-as 65030
 neighbor 192.0.2.21 description ISP 30
 neighbor 192.0.2.41 remote-as 65040
 neighbor 192.0.2.41 description ISP 40
!

If you want to try this example and the other examples for yourself, 
have a look at Installing the minilab and running examples at the end 
of the book. If you've never configured a router using a Cisco-like 
command line interface (CLI), have a look at Appendix: the router CLI 
for a short introduction.

⚠To avoid issues with other examples and to keep consistency 
between the examples, the addresses for both BGP neighbors 
(192.0.2.21 and 192.0.2.41) fall within out own prefix 
192.0.2.0/24. In reality, ISPs normally provide a /30 or /29 
prefix to number the link subnet between the ISP and the 
customer. 

The router bgp 65082 line tells the router that we want to configure 
the BGP protocol, and that this router belongs to AS 65082. The next 
line tells the router that we want to originate the prefix 192.0.2.0/24. 
Originate means that this router injects this prefix into BGP and tells 
the rest of the world that these addresses are used in our AS.
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⚠On Cisco routers, we can't specify our prefix or prefixes us-
ing CIDR notation. Instead, we'll have to use a mask. In this 
case that would be network 192.0.2.0 mask 
255.255.255.0. But when displaying the configuration, the 
mask part will be left out, as the mask that corresponds 
to / 24 is implied for class C networks. With the FRRouting 
software for Linux, either prefix notation or a mask is ac-
cepted.

We can monitor the progress of the BGP session establishment with the 
show ip bgp summary command. This is what an older router would 
show if we asked it what's going on with BGP:

Router# show ip bgp summary 
BGP router identifier 192.0.2.251, local AS number 65082
RIB entries 1, using 112 bytes of memory
Peers 2, using 40 KiB of memory

Neighbor       AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down   State
192.0.2.21  65030      81      81      6   0    0 00:00:04      2
192.0.2.41  65040       0       0      0   0    0 never    Active

This will look a little different when you try the example yourself, as 
the output of the router commands sometimes has to be edited so the 
lines don't get too long and some less relevant information is left out. 
Also, different routers will show slightly different output, but they will 
largely show the same information.

For the first neighbor, the state is a number. This means the BGP ses-
sion is in the Established state, and the number is the number of pre-
fixes received and accepted from the neighbor. (I.e., prefixes filtered 
out don’t count.)

Should the InQ or OutQ numbers be higher than zero, this means the 
routers are still busy exchanging prefixes. However, a zero here 
doesn’t necessarily mean they’re not exchanging prefixes currently.

The second neighbor is in the Active state, and has never been up (in 
the Established state). If this persists or if the state goes to Idle, there’s 
likely a problem that warrants talking to someone who can check the 
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other end of the BGP session. But in the case above we were just a bit 
impatient and the second BGP session came up a few moments later.

What happened in this example is that immediately after we enter the 
neighbor ... remote-as ... line, the router started trying to set up 
a BGP session to the specified neighbor. Even before we set up filters 
or other restrictions. This way, our AS will happily propagate the in-
formation it learns from AS 65030 to AS 65040 and vice versa.

That is not good. So some newer routers will not send any outgoing 
updates until an outgoing filter or policy is configured and not accept 
incoming updates until an incoming filter or policy is configured, as 
per [RFC 8212]. So FRRouting version 8 (which is used if you want to 
run the examples yourself using the Docker BGP minilab), you'll get 
the following results with the example 1 configuration in effect:

Router# show ip bgp summary

IPv4 Unicast Summary (VRF default):
BGP router identifier 192.0.2.251, local AS number 65082 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 1433 KiB of memory

Neighbor       AS MsgRcvd MsgSent   Up/Down State/PfxRcd   PfxSnt
192.0.2.21  65030      20      16  00:13:41     (Policy) (Policy)
192.0.2.41  65040      18      16  00:13:41     (Policy) (Policy)

For the moment, let's work around that by entering:

Router# conf t
Router(config)# router bgp 65082
Router(config-router)# no bgp ebgp-requires-policy 
Router(config-router)# exit
Router(config)# exit
Router# clear ip bgp *

So first we add no bgp ebgp-requires-policy to the configuration, 
and then issue the clear ip bgp * command to restart all the BGP 
sessions so we can be sure that we're not looking at stale information. 
We now get:
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Router# show ip bgp summary

IPv4 Unicast Summary (VRF default):
BGP router identifier 192.0.2.251, local AS number 65082 vrf-id 0
BGP table version 4
RIB entries 9, using 1728 bytes of memory
Peers 2, using 1433 KiB of memory

Neighbor       AS MsgRcvd MsgSent   Up/Down State/PfxRcd PfxSnt
192.0.2.21  65030      16      12  00:00:05            2      4
192.0.2.41  65040      14      14  00:00:05            2      4

The fact that the router sends four prefixes to each neighbor is a bit un-
expected. So let's see which prefixes it's sending to neighbor 
192.0.2.21:

Router# show ip bgp neighbors 192.0.2.21 advertised-routes
Status codes:  s suppressed, d damped, h history, * valid, > best, 
= multipath,
               i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes:  i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

   Network       Next Hop Metric LocPrf Weight Path
*> 10.0.10.0/23  0.0.0.0                     0 65040 65010 i
*> 10.0.20.0/22  0.0.0.0                     0 65030 65020 i
*> 10.0.30.0/23  0.0.0.0                     0 65030 i
*> 10.0.40.0/21  0.0.0.0                     0 65040 i

Total number of prefixes 4

It's a bit odd that FRRouting sends prefixes it just learned from AS 
65030 back to AS 65030, but that shouldn't cause problems. And indeed 
it sends the AS 65040 prefixes to AS 65030 (as well as the other way 
around), so in the next chapter we're going to add some filters to keep 
that from happening.

However, our own prefix 192.0.2.0/24 is not advertised to this 
neighbor. The reason for that is simple:

Router# show ip route 192.0.2.0/24
% Network not in table

27



So our own prefix is not in our router's IP routing table. In that situa-
tion, the logic is that if the router itself doesn't know where to send 
packets for this prefix, how can it advertise this prefix to the rest of the 
world? We can fix this using a static route:

Example 2: a static route to enable prefix origination
!
ip route 192.0.2.0 255.255.255.0 Null0 250
!

The Null0 interface is a special interface that makes packets forwarded 
to it disappear. The effect of this static route is that packets towards 
192.0.2.x are filtered out. Using a Null0 route like this has the added 
benefit that if parts of the prefix in question aren't in use, packets won't 
be sent back to the ISP if there's a default route, with the ISP then send-
ing the packets back and they keep ping ponging back and forth until 
their time to live reaches zero.

The 250 is the priority of the static route. Any other routes for that 
same prefix with a lower priority value will override the Null0 route. 
With this route in effect, the router advertises the prefix to its neigh-
bors:

Router# show ip bgp 192.0.2.0/24
BGP routing table entry for 192.0.2.0/24, version 6
Paths: (1 available, best #1, table Default-IP-Routing-Table)
  Advertised to non peer-group peers:
  192.0.2.21 192.0.2.41 
  Local
    0.0.0.0 from 0.0.0.0 (192.0.2.255)
      Origin IGP, metric 0, localpref 100, weight 32768, valid, 
sourced, local, best

Of course no BGP configuration is complete without some IPv6. Ex-
ample 3 below is the IPv6 equivalent of examples 1 and 2, except that 
we’re only configuring an IPv6 BGP session towards ISP 30 and not 
ISP 40.
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Example 3: The IPv6 version of examples 1 and 2
!
router bgp 65082
 neighbor 2001:db8:30:8201::1 remote-as 65030
 neighbor 2001:db8:30:8201::1 description ISP 30
 no neighbor 2001:db8:30:8201::1 activate
!
 address-family ipv6
 network 2001:db8:82::/48
 neighbor 2001:db8:30:8201::1 activate
 exit-address-family
!
ipv6 route 2001:db8:82::/48 Null0 250
!

The obvious difference is that the neighbor address is an IPv6 address. 
However, even for IPv6 neighbors, the assumption is that we’re going 
to exchange IPv4 prefixes, not IPv6 prefixes. So what we do in the first 
part of the configuration, is disable IPv4 for this BGP session with the 
no neighbor ... activate command.

Next, we tell the router we want to configure parameters related to 
address family IPv6. (We could have said address-family ipv6 
unicast to be more precise.) Here we can specify the IPv6 prefix(es) 
we want to originate, 2001:db8:82::/48 in this case. Last but not 
least, we activate our neighbor for the IPv6 unicast address family. 
And we add the static route to the Null0 interface. The results, using 
the slightly reordered show bgp ipv6 ... vs show ip bgp ...:

Router# show bgp ipv6 unicast summary
IPv6 Unicast Summary (VRF default):
BGP router identifier 192.0.2.251, local AS number 65082 vrf-id 0
BGP table version 2
RIB entries 3, using 576 bytes of memory
Peers 1, using 716 KiB of memory

Neighbor                AS   Up/Down State/PfxRcd PfxSnt Desc
2001:db8:30:8201::1  65030  00:03:11            1      2 ISP 30

And:
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Router# show bgp ipv6 unicast
BGP table version is 2, local router ID is 192.0.2.251, vrf id 0
Default local pref 100, local AS 65082
Status codes:  s suppressed, d damped, h history, * valid, > best, 
= multipath,
               i internal, r RIB-failure, S Stale, R Removed
Nexthop codes: @NNN nexthop's vrf id, < announce-nh-self
Origin codes:  i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

   Network          Next Hop        Metric LocPrf Weight Path
*> 2001:db8:30::/44 fe80::42:acff:fe11:4
                                         0             0 65030 i
*> 2001:db8:82::/48 ::                   0         32768 i

Displayed  2 routes and 2 total paths

The fe80:: next hop address is an IPv6 link local address. All IPv6 
routing protocols are required to use link local next hop addresses, as 
link local addresses are required so routers can send ICMPv6 redirect 
[RFC 4861] messages when necessary. However, for iBGP to work 
properly, regular global unicast next hop addresses are required. 
Which is also present if we further inspect the prefix in question:

Router# show bgp ipv6 unicast 2001:db8:30::/44
BGP routing table entry for 2001:db8:30::/44, version 2
Paths: (1 available, best #1, table default)
  Advertised to non peer-group peers:
  2001:db8:30:8201::1
  65030
    2001:db8:30:8201::1 from 2001:db8:30:8201::1 (198.51.100.223)
    (fe80::42:acff:fe11:4) (used)
      Origin IGP, metric 0, valid, external, best (First path 
received)

30

https://datatracker.ietf.org/doc/html/rfc4861#section-4.5


Appendix: BGP minilab

You can run most of the examples in a “BGP minilab” so you can see 
how they work and perform your own experiments. The minilab uses 
virtual FRRouting routers that run in Docker containers. The practice 
network is set up as follows:

Figure 8: BGP mini lab practice network

The components of the practice network are:

• “Network 82”, our own network. The main router is R1 or simply 
Router, with three additional routers (R2, R3 and R4) that are used 
in later examples. Network 82 gets transit service from ISPs 30 
and 40, and can peer with networks 83, 84 and 85 through the in-
ternet exchange.

• ISPs 10, 20, 30 and 40, where ISPs 10 and 40 sit at the top of the 
hierarchy and peer with each other. ISP 30 is a transit customer of 
ISP 20, and ISP 20 is a transit customer of ISP 10.
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• An internet exchange with a route server.

• Three peers: networks 83, 84 and 85. These are also all customers 
of ISPs 30 and 40 and connect to the internet exchange.

Installing the minilab and running examples

Install the minilab on your own computer as follows:

• Install Docker

• Under Windows: make sure it's possible to run Powerhell scripts

• Download the example configurations and the supporting 
scripts from my website and unzip them

• Start Docker

• Start the command line: terminal (Mac), shell or xterm (Linux) or 
Powershell (Windows) and make the folder/directory with the 
downloaded examples your current directory

With Docker running you can use the following scripts:

• start.sh / start.ps1: starts the virtual routers and loads the 
configurations to run an example

• connectrouter.sh / connectrouter.ps1: connects to an al-
ready running virtual router

• stoprouters.sh / stoprouters.ps1: stops all running virtual 
routers

To run an example, use the example script followed by the example 
number (or name). So on Mac/Linux:

./start.sh example 1

On Windows:

.\start.ps1 example 1

This will start up the required virtual routers and connect you to the 
main router “Router” a.k.a. Router82. When you log out, all the virtual 
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routers are shut down. If you want to run several examples, add the 
keeprunning argument when starting an example, like:

.\start.ps1 keeprunning 1

This way, when you disconnect from the virtual router, some of the 
“support” virtual routers are kept running so they don't have to be 
restarted when starting another example. You can use the additional 
keyword detach to run router82 in the background, making it easier to 
connect to different routers. Some examples do this automatically.

The connectrouter scripts take a router number as the first argument 
and will connect you to that router. When you log out, the virtual 
router keeps running. You can also add a command and then the script 
will run that command then return while the virtual router keeps run-
ning:

% ./connectrouter.sh 82 show ip bgp summary
Router# show ip bgp summary    
BGP router identifier 192.0.2.251, local AS number 65082
RIB entries 5, using 560 bytes of memory
Peers 2, using 18 KiB of memory

Neighbor       AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down  State
192.0.2.21  65030       3       6      0   0    1 00:00:02     1
192.0.2.41  65040       4       5      0   0    1 00:00:02     1

Total number of neighbors 2

Total num. Established sessions 2
Total num. of routes received     2
% 

Use the stoprouters script to stop all running virtual routers.

⚠Saving your configuration overwrites the existing example 
configuration. So use the write command with care. 
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